Your ROOT_URL in app.ini is https://git.tintinger.org/ but you are visiting https://tintinger.org/adalbertofuqua/origintraffic/wiki/DeepSeek-R1-Model-now-Available-in-Amazon-Bedrock-Marketplace-And-Amazon-SageMaker-JumpStart You should set ROOT_URL correctly, otherwise the web may not work correctly.
1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Adalberto Fuqua edited this page 2 months ago
This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.


Today, we are delighted to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, larsaluarna.se together with the distilled versions varying from 1.5 to 70 billion criteria to build, experiment, and properly scale your generative AI concepts on AWS.

In this post, we show how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to deploy the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that uses support discovering to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base foundation. An essential differentiating function is its support knowing (RL) action, wiki.asexuality.org which was used to fine-tune the model's reactions beyond the basic pre-training and fine-tuning process. By integrating RL, DeepSeek-R1 can adapt better to user feedback and goals, ultimately improving both significance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, implying it's geared up to break down intricate questions and reason through them in a detailed manner. This guided thinking procedure allows the model to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT abilities, aiming to create structured responses while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has captured the industry's attention as a flexible text-generation model that can be integrated into different workflows such as representatives, sensible reasoning and data analysis jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion specifications, enabling efficient reasoning by routing queries to the most relevant expert "clusters." This technique permits the design to specialize in various issue domains while maintaining general performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning capabilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to mimic the behavior and reasoning patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent hazardous content, and assess designs against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can develop numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit increase, develop a limit increase demand and connect to your account group.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For directions, see Establish permissions to utilize guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent hazardous material, and evaluate designs against essential safety criteria. You can execute precaution for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic flow includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned suggesting the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.

The model detail page offers vital details about the model's abilities, prices structure, and application standards. You can discover detailed use instructions, consisting of sample API calls and code bits for combination. The design supports numerous text generation jobs, including material development, code generation, and question answering, utilizing its reinforcement learning optimization and CoT thinking abilities. The page likewise of release options and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, pick Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of instances, get in a number of instances (in between 1-100). 6. For Instance type, choose your instance type. For pipewiki.org optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up sophisticated security and facilities settings, consisting of virtual personal cloud (VPC) networking, service role permissions, and file encryption settings. For many utilize cases, the default settings will work well. However, for production implementations, you may wish to review these settings to align with your organization's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is total, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive user interface where you can explore various triggers and adjust design specifications like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for ideal results. For example, content for inference.

This is an excellent way to check out the model's thinking and text generation capabilities before integrating it into your applications. The play ground provides immediate feedback, assisting you comprehend how the design reacts to different inputs and letting you tweak your prompts for optimum outcomes.

You can rapidly evaluate the design in the play ground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform reasoning utilizing a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, sets up reasoning parameters, and sends a request to generate text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML solutions that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 convenient approaches: utilizing the instinctive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you choose the method that best suits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model internet browser displays available models, with details like the company name and model abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card reveals essential details, including:

- Model name

  • Provider name
  • Task classification (for instance, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the model

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The model name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you release the design, it's advised to examine the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the instantly generated name or produce a custom one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the variety of instances (default: 1). Selecting proper instance types and counts is important for cost and performance optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the design.

    The deployment procedure can take several minutes to finish.

    When deployment is total, your endpoint status will change to InService. At this point, the design is all set to accept inference demands through the endpoint. You can keep an eye on the deployment development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is complete, you can invoke the model utilizing a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS permissions and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and execute it as shown in the following code:

    Clean up

    To avoid unwanted charges, complete the actions in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases.
  5. In the Managed implementations area, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop ingenious solutions using AWS services and accelerated calculate. Currently, he is focused on developing techniques for fine-tuning and optimizing the reasoning performance of large language designs. In his complimentary time, Vivek enjoys treking, viewing movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing services that assist customers accelerate their AI journey and unlock business value.